Telegram Group & Telegram Channel
Как я запускал курс DMIA. Часть первая

🧑‍🎓 Расскажу, как формировался мой курс DMIA (Data Mining in Action), какие с ним были сложности и какие цели я ставил перед собой как преподаватель. Курс начался как спецкурс по машинному обучению — факультатив в МФТИ, когда мы вместе с заведующим кафедрой делали свой стартап. Он был руководителем, а в команде было несколько студентов. Стартап был посвящён интеллектуальному анализу текстов. Получается, 14 лет назад мы уже занимались тем, что находится на пике хайпа сегодня.

🔎 Мы пытались делать семантический поиск. Причём мы (студенты) тогда ничего не умели ещё сами, не проходили никакие курсы машинного обучения. И при этом нам нужно было привлекать других талантливых студентов к себе в стартап. У меня тогда еще не получалось собирать работающие алгоритмы, но получалось рассказывать про идею достаточно зажигательно, чтобы поднимать определённые инвестиции, что хотя бы давало ресурс для экспериментов.

🤔 Было понятно, что нам надо самим надо развиваться в теме машинного обучения и нужно откуда-то брать людей, которые будут владеть темой. Лучший способ разобраться самому и привлечь кадры - преподавание, поэтому мы сделали спецкурс, где лектором был тот самый завкаф и наш кофаундер Никита Пустовойтов. Он до сих пор работает в сфере анализа данных и фактически именно он привёл меня в тему машинного обучения.

📈 Постепенно из-за того, что нагрузка у Никиты росла какими-то чудовищными темпами и он брал много всяких интересных задач, так получилось, что курс полностью оказался на мне и трансформировался исключительно в мой курс. На него стало приходить какое-то безумное количество людей, и их число росло как снежный ком. Я просто старался понятно и интересно объяснять предмет, и этого было достаточно, чтобы слушателей становилось больше.

🏔 В какой-то момент я обнаружил себя читающим лекцию в аудиторию человек на 400, и она была забита битком. И места хватило не всем. Мне даже потом рассказывали, что людям на улице был слышен шум аплодисментов из аудитории. Это было, конечно, очень приятно. Я осознал, что курс разросся и надо бы его уже как-то забрендировать. Тогда была серия книг, которая называлась «[Название темы] in action». Мне очень нравилась идея показывать предмет именно в действии, поэтому я назвал свой курс Data Mining in action в качестве реверанса этой серии книг. Тогда еще было модно называть машинное обучение «в широком смысле» (т.е. вместе с работой с данными и exploratory analysis) Data Mining, отсюда и название.

Продолжение следует :)
🔥57👍146



tg-me.com/kantor_ai/236
Create:
Last Update:

Как я запускал курс DMIA. Часть первая

🧑‍🎓 Расскажу, как формировался мой курс DMIA (Data Mining in Action), какие с ним были сложности и какие цели я ставил перед собой как преподаватель. Курс начался как спецкурс по машинному обучению — факультатив в МФТИ, когда мы вместе с заведующим кафедрой делали свой стартап. Он был руководителем, а в команде было несколько студентов. Стартап был посвящён интеллектуальному анализу текстов. Получается, 14 лет назад мы уже занимались тем, что находится на пике хайпа сегодня.

🔎 Мы пытались делать семантический поиск. Причём мы (студенты) тогда ничего не умели ещё сами, не проходили никакие курсы машинного обучения. И при этом нам нужно было привлекать других талантливых студентов к себе в стартап. У меня тогда еще не получалось собирать работающие алгоритмы, но получалось рассказывать про идею достаточно зажигательно, чтобы поднимать определённые инвестиции, что хотя бы давало ресурс для экспериментов.

🤔 Было понятно, что нам надо самим надо развиваться в теме машинного обучения и нужно откуда-то брать людей, которые будут владеть темой. Лучший способ разобраться самому и привлечь кадры - преподавание, поэтому мы сделали спецкурс, где лектором был тот самый завкаф и наш кофаундер Никита Пустовойтов. Он до сих пор работает в сфере анализа данных и фактически именно он привёл меня в тему машинного обучения.

📈 Постепенно из-за того, что нагрузка у Никиты росла какими-то чудовищными темпами и он брал много всяких интересных задач, так получилось, что курс полностью оказался на мне и трансформировался исключительно в мой курс. На него стало приходить какое-то безумное количество людей, и их число росло как снежный ком. Я просто старался понятно и интересно объяснять предмет, и этого было достаточно, чтобы слушателей становилось больше.

🏔 В какой-то момент я обнаружил себя читающим лекцию в аудиторию человек на 400, и она была забита битком. И места хватило не всем. Мне даже потом рассказывали, что людям на улице был слышен шум аплодисментов из аудитории. Это было, конечно, очень приятно. Я осознал, что курс разросся и надо бы его уже как-то забрендировать. Тогда была серия книг, которая называлась «[Название темы] in action». Мне очень нравилась идея показывать предмет именно в действии, поэтому я назвал свой курс Data Mining in action в качестве реверанса этой серии книг. Тогда еще было модно называть машинное обучение «в широком смысле» (т.е. вместе с работой с данными и exploratory analysis) Data Mining, отсюда и название.

Продолжение следует :)

BY Kantor.AI


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/kantor_ai/236

View MORE
Open in Telegram


Kantor AI Telegram | DID YOU KNOW?

Date: |

That growth environment will include rising inflation and interest rates. Those upward shifts naturally accompany healthy growth periods as the demand for resources, products and services rise. Importantly, the Federal Reserve has laid out the rationale for not interfering with that natural growth transition.It's not exactly a fad, but there is a widespread willingness to pay up for a growth story. Classic fundamental analysis takes a back seat. Even negative earnings are ignored. In fact, positive earnings seem to be a limiting measure, producing the question, "Is that all you've got?" The preference is a vision of untold riches when the exciting story plays out as expected.

Export WhatsApp stickers to Telegram on Android

From the Files app, scroll down to Internal storage, and tap on WhatsApp. Once you’re there, go to Media and then WhatsApp Stickers. Don’t be surprised if you find a large number of files in that folder—it holds your personal collection of stickers and every one you’ve ever received. Even the bad ones.Tap the three dots in the top right corner of your screen to Select all. If you want to trim the fat and grab only the best of the best, this is the perfect time to do so: choose the ones you want to export by long-pressing one file to activate selection mode, and then tapping on the rest. Once you’re done, hit the Share button (that “less than”-like symbol at the top of your screen). If you have a big collection—more than 500 stickers, for example—it’s possible that nothing will happen when you tap the Share button. Be patient—your phone’s just struggling with a heavy load.On the menu that pops from the bottom of the screen, choose Telegram, and then select the chat named Saved messages. This is a chat only you can see, and it will serve as your sticker bank. Unlike WhatsApp, Telegram doesn’t store your favorite stickers in a quick-access reservoir right beside the typing field, but you’ll be able to snatch them out of your Saved messages chat and forward them to any of your Telegram contacts. This also means you won’t have a quick way to save incoming stickers like you did on WhatsApp, so you’ll have to forward them from one chat to the other.

Kantor AI from us


Telegram Kantor.AI
FROM USA